Frobenius Problem and the Covering Radius of a Lattice

نویسندگان

  • Lenny Fukshansky
  • Sinai Robins
چکیده

Let N ≥ 2 and let 1 < a1 < · · · < aN be relatively prime integers. Frobenius number of this N-tuple is defined to be the largest positive integer that cannot be expressed as P N i=1 aixi where x1, ..., xN are non-negative integers. The condition that gcd(a1 , ..., aN ) = 1 implies that such number exists. The general problem of determining the Frobenius number given N and a1, ..., aN is NP-hard, but there has been a number of different bounds on the Frobenius number produced by various authors. We use techniques from the geometry of numbers to produce a new bound, relating Frobenius number to the covering radius of the null-lattice of this N-tuple. Our bound is particularly interesting in the case when this lattice has equal successive minima, which, as we prove, happens infinitely often.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius Problem and the Covering Radius of a Lattice Lenny Fukshansky and Sinai Robins

Let N ≥ 2 and let 1 < a1 < · · · < aN be relatively prime integers. Frobenius number of this N-tuple is defined to be the largest positive integer that cannot be expressed as ∑ N i=1 aixi where x1, ..., xN are non-negative integers. The condition that gcd(a1, ..., aN ) = 1 implies that such number exists. The general problem of determining the Frobenius number given N and a1, ..., aN is NP-hard...

متن کامل

Dynamic Hub Covering Problem with Flexible Covering Radius

Abstract One of the basic assumptions in hub covering problems is considering the covering radius as an exogenous parameter which cannot be controlled by the decision maker. Practically and in many real world cases with a negligible increase in costs, to increase the covering radii, it is possible to save the costs of establishing additional hub nodes. Change in problem parameters during the pl...

متن کامل

A multiobjective continuous covering location model

This paper presents a multiobjective continuous covering location problem in fuzzy environment. Because of uncertain covering radius, possibility of covering concept is introduced.Since, the uncertainty may cause risk of uncovering customers; the problemis formulated as a risk management model. The presented model is an extension of the discrete covering location models tocontinuous space. Two ...

متن کامل

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

Generalized Frobenius Numbers: Bounds and Average Behavior

Let n ≥ 2 and s ≥ 1 be integers and a = (a1, . . . , an) be a relatively prime integer n-tuple. The s-Frobenius number of this ntuple, Fs(a), is defined to be the largest positive integer that cannot be represented as ∑n i=1 aixi in at least s different ways, where x1, ..., xn are non-negative integers. This natural generalization of the classical Frobenius number, F1(a), has been studied recen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2007